4 resultados para Microcystins

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The incidence of toxic cyanobacterial blooms is one of the important consequences of eutrophication in aquatic ecosystems. It is a very common phenomenon in reservoirs and shrimp ponds in the State of Rio Grande do Norte (RN), Brazil. Cyanobacterias produce toxins which can affect aquatic organisms and men trough the food chain. Aiming to contribute to the studies of cyanobacterias in RN, we propose: a) to evaluate the toxicity of isolated cyanobacterias in important fresh-water environments; and b) to verify the effects of both natural and cultured blooms occurred in reservoirs for human supply and in the cladoceran Ceriodaphnia silvestrii. This study was carried out using samples of natural blooms occurred between March and October of 2004 in Gargalheiras Dam (08º L e 39º W), in July of 2004 in Armando Ribeiro Gonçalves Dam (06o S e 37o W) and in commercial shrimp ponds (Litopenaeus vannamei) located in fresh-water environments. The samples were collected with plankton net (20µm.) for identification, isolation and obtaining of phytoplanktonic biomass for liophilization and later toxicity bioassays. The toxicity of cultured samples and natural blooms was investigated through bioassays in Swiss mice. Quantification of cyanobacteria in samples was conducted following the Ütermol method, with 300mL samples fixed with lugol. The toxicity test with Ceriodaphnia silvestrii followed ABNT, 2001 recommendations, and were accomplished with natural hepatotoxic bloom s samples and cultured samples of both non-toxic and neurotoxic C. raciborskii. In this test, five newborns, aged between 6 and 24 hours, were exposed to different concentrations (0 a 800 mg.L-1) of crude cyanobacterial extracts during 24 and 48 hours. Three replicates were used per treatment. The pH, temperature and dissolved oxygen at the beginning and after 24 and 48hours from the test were measured. We estimated the CL50 through the Trimmed Spearman-Karber method. The blooms were constituted by Microcystis panniformis, M. aeruginosa, Anabaena circinalis, Cylindrospermopsis raciborskii and Planktothrix agardhii, producers of mycrocistin-LR confirmed with HPLC analysis. Samples of hepatotoxic blooms registered toxinogenic potential for C. silvestrii, with CL50-24h value of 47.48 mg.L-1 and CL5048h of 38.15 mg.L-1 for GARG samples in march/2005; CL50-24h of 113,13 mg.L-1 and CL5048h of 88,24 mg.L-1 for ARG July/2004; CL50-24h of 300.39 mg.L-1 and CL50-48h of 149.89 mg.L-1 for GARG October/2005. For cultured samples, values of CL50-24h and CL50-48h for C. raciborskii toxic strains were 228.05 and 120.28 mg.L-1, respectively. There was no mortality of C. silvestrii during the tests with non-toxic C. raciborskii strain. The toxicity test with C. silvestrii presented good sensitivity degree to cyanotoxins. The toxicity of natural hepatotoxic blooms samples (microcystins) and cultured neurotoxic saxitoxins producer samples analyzed in this study give us strong indications of that toxin s influence on the zooplanktonic community structure in tropical aquatic environments. Eleven cyanobacteria strains were isolated, representing 6 species: Anabaenopsis sp., Cylindrospermopsis raciborskii, Chroococcus sp., Microcystis panniformis, Geitlerinema unigranulatum e Planktothrix agardhii. None presented toxicity in Swiss mice. The strains were catalogued and deposited in the Laboratório de Ecologia e Toxicologia de Organismos Aquáticos (LETMA), in UFRN, and will be utilized in ecotoxicológical and ecophysiological studies, aiming to clarify the causes and control of cyanobacterial blooms in aquatic environments in RN. This state s reservoirs must receive broader attention from the authorities, considering the constant blooms occurring in waters used for human consumption

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The presence of cyanobacterial blooms in reservoirs intended for supply to the population can create public health problems for many species could produce potentially toxic compounds and these are not eliminated in the conventional procedures used in water treatment plants. So even in amounts less than the maximum allowable limit imposed by MS, cyanotoxins can be present in drinking water distributed to the population, creating a chronic exposure. There is little information about the long-term effects of oral exposure to cyanotoxins. This work aimed to show the exposure orally (v.o) of animals to a crude extract of cyanobacteria containing cyanotoxins to evaluate the reproductive performance of pregnant rats and their offspring and fertility of male rats. The presence of microcystins (MCs) in samples collected during the flowering processes in freshwater reservoirs in the Rio Grande do Norte, was analyzed by enzyme immunoassay and its variants have been identified and quantified by chromatographic methods. It was observed that by administration v.o. cyanobacterial extract containing MCs (40, 100 or 250 ng of MCs / kg / day) did not cause systemic toxicity in adult rats or effect on reproductive performance of male and female rats treated. It was also not observed any changes in skeletal study in the offspring of pregnant rats treated with the extract above. Because the solutions used contained MCs in a concentration equal to or greater than the tolerable daily intake for MCs, the results suggest, therefore, that the development of this work contributed to better assess public health risk as the oral exposure to cyanotoxins, increasing thus the credibility of the maximum allowable limit (LMP) of MCs in drinking water distributed to the population of several countries that use the LMP established by WHO in its legislation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Blooms negatively compromise the aquatic environment, plants, animals and human health.Some species are toxin-producing, such as the neurotoxin saxitoxin and the hepatotoxin microcystin, which may contaminate water reservoirs, as those existing in the semiarid region of Rio Grande do Norte (Brazil) which are used to supply the population, fishing, aquiculture and recreational activities, thereby providing the risk of human exposure through water intake, dermal contact and respiratory tract. Thus, it is recommended a constant monitoring of the density of cyanobacteria with the quantification of cyanotoxins. One goal with this work was the monitoring of water in four reservoirs in semiarid of RN through the identification and enumeration of cyanobacteria and through the identification and quantification of cyanotoxins by ELISA. Furthermore, we intended to assess the environmental perception of farmers and artisanal fishers in reservoirs of semiarid of RN through semi-structured interviews with questions mostly related to water and eutrophication. Through these objectives the aim was the development of management strategies for aquaculture and prevention of risks to public health. The results showed that the highest values of microcystins were found in the rainy season. Standards for drinking water, according to the guidelines of Ministry of Health 2914/2011 and CONAMA 357/05, setting the maximum values for raw water density of cyanobacteria: 50,000 cel.mL-1; microcystin: 1 μg. L-1 and saxitoxin: 3 μg. L-1. The values found for microcystin ranged between 0.00227 μg. L-1 and 24.1954 μg. L-1. From 128 samples analyzed, 27% were above the limit. There was no clear seasonal pattern for saxitoxins and their values ranged between 0.003 μg. L-1 and 0.766 μg. L-1 with none of the values above the limit. Furthermore, 76% of the densities of cyanobacteria values were above the limit. About environmental perception, 52 interviews were conducted and the results show that the respondents recognize the main uses of water of the rervoirs, recognize the importance and have a positive view about the reservoirs. They also realize that the water has a poor quality and can cause health problems. The results provide data showing the persistence of cyanobacteria and cyanotoxins, many times over the limit, reinforcing the importance of constant monitoring. The assessment of environmental perception gives foundation for later proposed environmental education linked to public health management into the context of this particular population, making it more effective

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The incidence of toxic cyanobacterial blooms is one of the important consequences of eutrophication in aquatic ecosystems. It is a very common phenomenon in reservoirs and shrimp ponds in the State of Rio Grande do Norte (RN), Brazil. Cyanobacterias produce toxins which can affect aquatic organisms and men trough the food chain. Aiming to contribute to the studies of cyanobacterias in RN, we propose: a) to evaluate the toxicity of isolated cyanobacterias in important fresh-water environments; and b) to verify the effects of both natural and cultured blooms occurred in reservoirs for human supply and in the cladoceran Ceriodaphnia silvestrii. This study was carried out using samples of natural blooms occurred between March and October of 2004 in Gargalheiras Dam (08º L e 39º W), in July of 2004 in Armando Ribeiro Gonçalves Dam (06o S e 37o W) and in commercial shrimp ponds (Litopenaeus vannamei) located in fresh-water environments. The samples were collected with plankton net (20µm.) for identification, isolation and obtaining of phytoplanktonic biomass for liophilization and later toxicity bioassays. The toxicity of cultured samples and natural blooms was investigated through bioassays in Swiss mice. Quantification of cyanobacteria in samples was conducted following the Ütermol method, with 300mL samples fixed with lugol. The toxicity test with Ceriodaphnia silvestrii followed ABNT, 2001 recommendations, and were accomplished with natural hepatotoxic bloom s samples and cultured samples of both non-toxic and neurotoxic C. raciborskii. In this test, five newborns, aged between 6 and 24 hours, were exposed to different concentrations (0 a 800 mg.L-1) of crude cyanobacterial extracts during 24 and 48 hours. Three replicates were used per treatment. The pH, temperature and dissolved oxygen at the beginning and after 24 and 48hours from the test were measured. We estimated the CL50 through the Trimmed Spearman-Karber method. The blooms were constituted by Microcystis panniformis, M. aeruginosa, Anabaena circinalis, Cylindrospermopsis raciborskii and Planktothrix agardhii, producers of mycrocistin-LR confirmed with HPLC analysis. Samples of hepatotoxic blooms registered toxinogenic potential for C. silvestrii, with CL50-24h value of 47.48 mg.L-1 and CL5048h of 38.15 mg.L-1 for GARG samples in march/2005; CL50-24h of 113,13 mg.L-1 and CL5048h of 88,24 mg.L-1 for ARG July/2004; CL50-24h of 300.39 mg.L-1 and CL50-48h of 149.89 mg.L-1 for GARG October/2005. For cultured samples, values of CL50-24h and CL50-48h for C. raciborskii toxic strains were 228.05 and 120.28 mg.L-1, respectively. There was no mortality of C. silvestrii during the tests with non-toxic C. raciborskii strain. The toxicity test with C. silvestrii presented good sensitivity degree to cyanotoxins. The toxicity of natural hepatotoxic blooms samples (microcystins) and cultured neurotoxic saxitoxins producer samples analyzed in this study give us strong indications of that toxin s influence on the zooplanktonic community structure in tropical aquatic environments. Eleven cyanobacteria strains were isolated, representing 6 species: Anabaenopsis sp., Cylindrospermopsis raciborskii, Chroococcus sp., Microcystis panniformis, Geitlerinema unigranulatum e Planktothrix agardhii. None presented toxicity in Swiss mice. The strains were catalogued and deposited in the Laboratório de Ecologia e Toxicologia de Organismos Aquáticos (LETMA), in UFRN, and will be utilized in ecotoxicológical and ecophysiological studies, aiming to clarify the causes and control of cyanobacterial blooms in aquatic environments in RN. This state s reservoirs must receive broader attention from the authorities, considering the constant blooms occurring in waters used for human consumption